Application of Wavelet Transform and Artificial Neural Network to Extract Power Quality Information from Voltage Oscillographic Signals in Electric Power Systems

نویسندگان

  • R. N. M. Machado
  • U. H. Bezerra
  • M. E. L Tostes
  • S. C. F. Freire
  • L. A. Meneses
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Power Quality Disturbances Using Wavelet Transform and S-transform Based Artificial Neural Network

This paper presents features that characterize power quality disturbances from recorded voltage and current signals using wavelet transformation and S-transform analysis. The disturbance of interest includes sag, swell, transient and harmonics. A 25kv distribution network has been simulated using matlab software. The feature extraction has been done using wavelet transformation and S-transform,...

متن کامل

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

FPGA Realization of Power Quality Disturbance Detection: An Approach with Wavelet, ANN and Fuzzy Logic

Identification and classification ofvoltage and current disturbances in power systems is an important task in power system monitoring and protection. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. New intelligent system technologies using wavelet transform, expert systems and artificial neural networks pro...

متن کامل

Detecção e classificação de distúrbios de tensão usando redes neurais ARTMAP Euclidiana modificada com treinamento continuado

This research presents a methodology to detect and classify voltage disturbances in electrical distribution systems using as tool, statistical and multilevel direct analysis of voltage signals in wavelet domain for the detection process and modified Euclidean ARTMAP neural network with continuous training for the classification (ARTMAPMECT). These two tools provide velocity, security and reliab...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017